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In the past decade, the interaction between prions and nucleic 
acids has garnered significant attention from the scientific commu-
nity. For many years, the participation of RNA and/or DNA in 
prion pathology has been largely ruled out by the “protein-only” 
hypothesis, but this is now being reconsidered. Experimental 
data now indicate that nucleic acids (particularly RNA), besides 
being carriers of genetic information, function as important key 
components during development, physiological responsiveness and 
cellular signaling. This revelation has brought a new perspective 
to prion pathology. Here we discuss the role of RNA molecules in 
prion protein aggregation and the resulting cellular toxicity. We 
combine our most recent findings with existing literature to shed 
new light on this exciting field of research.

The “protein-only” hypothesis postulates that PrPSc ‘multiplies’ by 
catalyzing the conversion of PrPC into a molecule resembling itself, 
thereby leading to its own propagation.1,2 This theory has excluded 
the participation of nucleic acids in prion propagation. However, the 
suggestion that an additional unknown factor could influence the 
PrPC to PrPSc conversion has brought back the possibility of nucleic 
acid involvement in prion diseases, where evidence for this has been 
accumulating over the past decade.3-8 Instead of encoding genetic 
information, nucleic acid molecules would act by lowering the free 
energy barrier between PrPC and PrPSc and, consequently, triggering 
conversion.9,10

In the last decade, our group has studied the interaction between 
prion proteins and nucleic acids. We have demonstrated that PrP 
interacts with nucleic acids in vitro, binds small sequences of double 
stranded DNA, acquires β-sheet secondary structure according to 
spectroscopic measurements, and presents some PrPSc-like char-
acteristics.4,11 Studies on the interaction of prion protein with 
RNA molecules have demonstrated that PrP can acquire protease 
resistance upon RNA binding, and that scrapie and cellular PrP 
isoforms bind with different affinities to some highly structured 
RNA sequences.12-15

In our latest report, we presented experimental data on the inter-
action between murine recombinant prion protein (rPrP23-231) and 

RNA molecules.16 We used total prokaryotic and eukaryotic RNA 
extracts from cultured cells along with small synthetic oligonucle-
otides and looked for changes in the secondary and tertiary structures 
of PrP. We also used two mutants lacking the N-terminal domain to 
demonstrate the importance for RNA binding, and evaluated the 
toxicity of the PrP:RNA complex in cultured mouse neuroblastoma 
cells (N2a).17

Our findings show that the heterogeneous mixture of RNA 
extracted from neuroblastoma cells was the only sample capable 
of triggering toxicity and massive aggregation. rPrP23-231 loses 
most of its secondary structure and immediately aggregates upon 
interaction with RNA. Interaction with small RNA sequences also 
leads to changes in the size of the complex and some aggregation, 
but the oligomeric species did not lead to toxicity. NMR investiga-
tions of this complex revealed that full length PrP partially recovers 
its native fold 72 h after RNA addition, and that the changes in 
the HSQC spectrum suggest that RNA binding causes some subtle 
changes in PrP structure. RNA does not induce aggregation of the 
PrP N-terminal deletion mutants, indicating that the N-terminal 
region is important for this process. We also observed that the 
rPrP23-231:N2aRNA complex protects both protein and RNA from 
degradation with proteinase K and Rnase A, respectively.

Moreover, we have seen that the PrP interaction with DNA, 
though identical in some respects, displays substantial differences 
from the interaction with RNA, and we try to correlate these differ-
ences with a possible physiological role for these binding events. We 
summarize the findings obtained when the prion protein binds DNA 
or RNA in Figure 1. The heterogeneous mixture of RNA extracted 
from neuroblastoma cells was the only sample that triggered toxicity 
and massive aggregation. The small RNAs were able to bind PrP but 
formed only small, non-toxic oligomeric species.

The component of the N2a RNA extract that facilitates aggrega-
tion and induces toxicity remains unidentified. In additional, several 
other questions remain unanswered. How do PrP:RNA aggregates 
exercise their toxicity? Is there a cellular receptor for prion aggregates? 
Is the observed cellular death caused by apoptosis or necrosis? Is it 
possible that a non-self RNA could produce toxic aggregates in other 
cell types?

All of these questions are becoming more relevant with the emerging 
evidence that RNAs can participate as regulatory molecules.18 The 
physicochemical properties of RNA allow it to participate in a diverse 
range of structural and catalytic roles through various mechanisms, 
including cell-to-cell communication.19
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Studies in plants first have shown that the phenomenon of 
co-suppression in response to transgene expression is mediated by 
RNA signaling and that this effect, which involves the RNA inter-
ference (RNAi) pathway, can be transmitted throughout the entire 
plant.8,20-25 There is also evidence for systemic RNA signaling in 
animals. The discovery of RNAi in Caenorhabditis elegans showed 
that RNA signals can be transmitted both from the environment (via 
ingestion) and systemically throughout the organism.26

RNA molecules can act as molecular adaptors to connect 
incoming analog signals to sequence-specific outcomes.18 This is 
exemplified by ‘riboswitches,’ which are mRNA elements that alter 
their structure in response to ligands, enabling them to sense and 
react to environmental parameters.27,28 This capacity enables the 
creation of new classes of RNA signaling molecules that vary in their 
target specificity but utilize a common infrastructure and output, 
thereby providing latitude to explore new connections in RNA-based 
regulatory networks.29,30 These findings place the PrP:RNA interac-
tion in a new context since RNA is no longer confined within the 
cell.

Since both aggregation and nucleic acid binding occur with 
decreased hydration, a bypass of the unfolded state can arise in the 
conversion of PrPc into a PrPSc-like structure.11,31 The intercon-
version might relate to an additional function of the PrP, such as a 
nucleic acid chaperone.8 One of the main characteristics of a nucleic 
acid chaperone is the occurrence of mutual coupled rearrange-
ments.32 Nucleic-acid binding of the prion protein appears with 
the ordering and structural modification of the N-domain.33 Thus, 
PrP might exert its function by participating as a NA chaperone in 
the gene regulation array at the post-transcriptional level, especially 
because of its capacity to bind both small RNAs and DNAs. In fact, 
PrP has been shown to interfere with the synthesis of HIV-1 proteins, 
implying an interaction with retroviral RNA.34 The possibility of a 
functional role for PrP in nucleic acid processing has recently been 
corroborated by the demonstration that PrP participates in the 
control of activated endogenous retroviruses.35 In the years ahead, we 
expect substantial progress in the breathtaking field of prion-RNA 
interactions.
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